Alternative Conceptual Models of Hanford Site Hydrogeology

Chris Murray, YuLong Xie, Paul Thorne, Tim Scheibe

Pacific Northwest National Laboratory

Elena Savelieva, Mikhail Kanevski

Russian Academy of Sciences (RAS/IBRAE)

Goal and Approach

- Estimate uncertainty in flow and transport at Hanford Site due to uncertainty in hydrogeology
 - Focus on unconfined aquifer
- Develop alternative conceptual models for two major elements of hydrogeology
 - Distribution of mud units in Ringold Formation
 - Zonation of Hanford formation aquifer
- Geostatistical approach
 - Generate suites of realizations using stochastic simulation
 - Rank the simulations using fast ranking algorithm
 - Run forward flow and transport code on large number of simulations to check the ranking
 - Perform inverse calibration on limited number of simulations
 - Strategy driven by current available computing power
 - Expected to change as computational power increases

Hanford Site Stratigraphy

Ringold Formation Mud Unit Distribution

- Hanford Site ~1500 km²
- ► 405 monitoring wells;
- ▶ 10 hydrogeologic units;
- Units have patchy distribution.

Study was performed for

3 low-permeability mud units,

because they control the vertical groundwater movement

Raw data on presence/absence of 3 mud units

Legend

- Unit present
- Unit absent
- Uncertain well

Battelle Unit4

Unit6

Pacific Northwest The Laboratory
U.S. Department of Energy 5

Unit4 Geostatistical Modeling

- Probabilistic model to estimate presence (threshold 0.5);
 - Using Indicator Kriging
- Sequential indicator simulation to estimate thickness for areas where Unit 4 is present

Ranking of Mud Unit Realizations

- Pseudo 3D models built by taking 2D realizations from each of the three mud units and superposing them by insertion of a sand layer in between each mud layer
 - 132,651 pseudo 3D models constructed
 - One for each combination of mud unit realizations.
 - Only a single connected sand body for each 3D model
- ► The goodness of each 3D model is evaluated by
 - Size of the sand body: the more sand the better
 - Tortuosity of the sand body: ratio of surface area to volume, the less the better
- Ranking
 - Two ranks, one for each of the criteria
 - Final rank is the average of the two ranks
- Computation
 - Calculation of geometry of bodies and ranking of realizations performed using software adapted from Deutsch (Computers & Geosciences, v.24, no.1, pp. 69-76 1998)

Results of Ranking Mud Unit Realizations

Unit 4

U6real44.ps

Unit 6

Unit 8

Most Conductive Set of Realizations

Least Conductive

Unit 1 Zonation

Base Case Model

Global Proportions of U1 Zones

		Proportion			Proportion
	# of data	data	decluster	geological map	used
Gravel1	165	71.74	84.38	85.71	85.00
Gravel2	6	2.61	2.71	4.01	4.00
Gravel3	43	18.70	6.67	4.51	5.00
Sand	15	6.52	5.31	4.51	4.75
Silt	1	0.43	0.94	1.25	1.25

Facies 1 Indicator Variogram

- Variogram used to model spatial continuity of each facies
- Anisotropy accounts for greater continuity in direction of depositional flow

$$\gamma = 0.001 + 0.999 Sph \begin{pmatrix} -35 & 55 \\ 16500 & 3000 \end{pmatrix}$$

Example Realizations of U1 Facies Distribution

Representative Statistics from Suite of 600 Stochastic Simulations

Most Probable Facies

Probability of Gravel1

Ranking of Unit 1 Zonation Simulations

- Each grid node in each simulation
 - Assigned mean hydraulic conductivity associated with facies present at that node
- Simulations ranked based on connectiveness of high conductivity zones
- Will run suite of simulations with
 - Extremely low and high connectivity of high conductivity zones
 - Median connectivity ranking

Conclusions

- Geostatistics provides method of generating multiple alternative conceptual models of hydrogeology
 - Mean behavior of simulations similar to "best-fit" estimates of site geologist
 - Individual simulations capture variability seen in data much more variable than "best-fit" model
- Forward and inverse modeling will allow estimation of uncertainty in contaminant transport due to uncertainty in hydrogeology